Giải bài 1 2 3 4 5 trang 32 33 sgk Toán 7 tập 2 Cánh Diều

Hướng dẫn giải Bài §6. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản sgk Toán 7 tập 2 bộ Cánh Diều. Nội dung bài Giải bài 1 2 3 4 5 trang 32 33 sgk Toán 7 tập 2 Cánh Diều bao gồm đầy đủ phần lí thuyết kèm bài giải các câu hỏi, hoạt động, luyện tập vận dụng và bài tập, giúp các bạn học sinh học tốt môn toán 7.


§6. XÁC SUẤT CỦA BIẾN CỐ NGẪU NHIÊN TRONG MỘT SỐ TRÒ CHƠI ĐƠN GIẢN

Câu hỏi khởi động trang 30 Toán 7 tập 2 CD

Xét một con xúc xắc cân đối và đồng chất một số chấm ở mỗi mặt là một trong các số 1, 2, 3, 4, 5, 6 (Hình 32). Gieo ngẫu nhiên xúc xắc một lần. Khi đó khả năng xuất hiện từ mặt của con xúc xắc là như nhau.

Xét biến cố “Mặt xuất hiện của xúc xắc có số chấm là số lẻ”.

Làm thế nào để phản ánh được khả năng xảy ra của biến cố trên?

Trả lời:

Để phản ánh được khả năng xảy ra của biến cố trên ta tính xác suất của biến cố đó trong trò chơi giao xúc xắc.

Xác suất của biến cố trong trò chơi này bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.


I. XÁC SUẤT CỦA BIẾN CỐ TRONG TRÒ CHƠI GIEO XÚC XẮC

Hoạt động 1 trang 30 Toán 7 tập 2 CD

Gieo ngẫu nhiên xúc xắc một lần.

a) Viết tập hợp A gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.

b) Xét biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chẵn”. Nêu những kết quả thuận lợi cho biến cố đó.

c) Tìm tỉ số của số các kết quả thuận lợi cho biến cố trên và số phần tử của tập hợp A.

Trả lời:

a) Các mặt của xúc xắc được đánh số từ 1 đến 6.

Khi đó mặt xuất hiện của xúc xắc nhận 1 trong các giá trị từ 1 đến 6.

Do đó A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.

b) Từ 1 đến 6 có các số chẵn là 2; 4; 6.

Do đó có 3 kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chẵn” là 2; 4; 6.

c) Tỉ số của số các kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chẵn” và số phần tử của tập hợp A bằng \(\dfrac{3}{6} = \dfrac{1}{2}\).


Luyện tập vận dụng 1 trang 31 Toán 7 tập 2 CD

Gieo ngẫu nhiên xúc xắc một lần. Tính xác suất của biến cố “Mặt xuất hiện của xúc xắc có số chấm là hợp số”.

Trả lời:

Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:

A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.

Số phần tử của tập hợp A là 6.

Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là hợp số” là: mặt 4 chấm, mặt 6 chấm.

Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).


II. XÁC SUẤT CỦA BIẾN CỐ TRONG TRÒ CHƠI RÚT THẺ TỪ TRONG HỘP

Hoạt động 2 trang 31 Toán 7 tập 2 CD

Một hộp có 12 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 12; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một chiếc thẻ trong hộp.

a) Viết tập hợp B gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

b) Xét biến cố “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3”. Nêu những kết quả thuận lợi cho biến cố đó.

c) Tìm tỉ số của số các kết quả thuận lợi cho biến cố trên và số phần tử của tập hợp B.

Trả lời:

a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là: B = {1; 2; 3; …; 12}.

Số phần tử của tập hợp B là 12.

b) Từ 1 đến 12 có các số chia hết cho 3 là: 3; 6; 9; 12.

Do đó có 4 kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3”.

c) Tỉ số của số các kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và số phần tử của tập hợp B bằng \(\dfrac{4}{12} = \dfrac{1}{3}\).


Luyện tập vận dụng 2 trang 32 Toán 7 tập 2 CD

Rút ngẫu nhiên một thẻ trong hộp có 12 chiếc thẻ đã nêu ở Ví dụ 2. Tính xác suất của biến cố “Số xuất hiện trên thẻ rút ra là số không chia hết cho 3”.

Trả lời:

Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 11, 12}.

Số phần tử của B là 12.

Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11.

Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{12}} = \dfrac{2}{3}\).


GIẢI BÀI TẬP

Sau đây là phần Giải bài 1 2 3 4 5 trang 32 33 sgk Toán 7 tập 2 Cánh Diều. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:

Giải bài 1 trang 32 Toán 7 tập 2 CD

Gieo ngẫu nhiên xúc xắc một lần. Tính xác suất của mỗi biến cố sau:

a) “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố”;

b) “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1”.

Bài giải:

Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:

A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.

Số phần tử của tập hợp A là 6.

a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.

Vì thế, xác suất của biến cố trên là \(\dfrac{3}{6} = \dfrac{1}{2}\).

b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.

Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).


Giải bài 2 trang 32 Toán 7 tập 2 CD

Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 51, 52. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tìm số phần tử của tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

a) “Số xuất hiện trên thẻ được rút ra là số có một chữ số”;

b) “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1”;

c) “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4”.

Bài giải:

Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là:

B = {1, 2, 3, …, 51, 52}.

Số phần tử của B là 52.

a) Có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có một chữ số” là: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Vì thế, xác suất của biến cố trên là \(\dfrac{9}{{52}}\).

b) Có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41.

Vì thế, xác suất của biến cố trên là \(\dfrac{3}{{52}}\).

c) Ta có:

\(4 = 0 + 4 = 1 + 3 = 2 + 2\)

Có năm kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4” là: 4, 13, 22, 31, 40.

Vì thế, xác suất của biến cố trên là \(\dfrac{5}{{52}}\).


Giải bài 3 trang 33 Toán 7 tập 2 CD

Viết ngẫu nhiên một số tự nhiên có hai chữ số. Tìm số phần tử của tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

a) “Số tự nhiên được viết ra là bình phương của một số tự nhiên”;

b) “Số tự nhiên được viết ra là bội của 15”;

c) “Số tự nhiên được viết ra là ước của 120”.

Bài giải:

Tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:

D = {10, 11, 12, …, 97, 98, 99}.

Số phần tử của D là 90.

a) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bình phương của một số tự nhiên” là: 16, 25, 36, 49, 64, 81.

Vì thế, xác suất của biến cố trên là \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\).

b) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bội của 15” là: 15, 30, 45, 60, 75, 90.

Vì thế, xác suất của biến cố trên là \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\).

c) Có tám kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là ước của 120” là: 10, 12, 15, 20, 24, 30, 40, 60.

Vì thế, xác suất của biến cố trên là \(\dfrac{{8}}{{90}} = \dfrac{4}{45}\).


Giải bài 4 trang 33 Toán 7 tập 2 CD

Tổ I của lớp 7D có 5 học sinh nữ là: Ánh, Châu, Hương, Hoa, Ngân và 5 học sinh nam là: Bình, Dũng, Hùng, Huy, Việt. Chọn ra ngẫu nhiên một học sinh trong Tổ I của lớp 7D. Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

a) “Học sinh được chọn ra là học sinh nữ”;

b) “Học sinh được chọn ra là học sinh nam”.

Bài giải:

Tập hợp E gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:

E = {Ánh, Châu, Hương, Hoa, Ngân, Bình, Dũng, Hùng, Huy, Việt}.

Số phần tử của E là 10.

a) Có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nữ” là: Ánh, Châu, Hương, Hoa, Ngân.

Vì thế, xác suất của biến cố trên là \(\dfrac{5}{{10}} = \dfrac{1}{2}\).

b) Có năm kết quả thuận lợi cho biến cố “Học sinh được chọn ra là học sinh nam” là: Bình, Dũng, Hùng, Huy, Việt.

Vì thế, xác suất của biến cố trên là \(\dfrac{5}{{10}} = \dfrac{1}{2}\).


Giải bài 5 trang 33 Toán 7 tập 2 CD

Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước: Việt Nam, Ấn Độ, Ai Cập, Brasil, Canada, Tây Ban Nha, Đức, Pháp, Nam Phi; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp G gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

a) “Học sinh được chọn ra đến từ châu Á”;

b) “Học sinh được chọn ra đến từ châu Âu”;

c) “Học sinh được chọn ra đến từ châu Mỹ”;

d) “Học sinh được chọn ra đến từ châu Phi”;

Bài giải:

Tập hợp G gồm các kết quả có thể xảy ra đối với học sinh được chọn ra là:

G = {học sinh đến từ Việt Nam, học sinh đến từ Ấn Độ, học sinh đến từ Ai Cập, học sinh đến từ Brasil, học sinh đến từ Canada, học sinh đến từ Tây Ban Nha, học sinh đến từ Đức, học sinh đến từ Pháp, học sinh đến từ Nam Phi}.

Số phần tử của G là 9.

a) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Á” là: học sinh đến từ Việt Nam, học sinh đến từ Ấn Độ.

Vì thế, xác suất của biến cố trên là \(\dfrac{2}{9}\).

b) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Âu” là: học sinh đến từ Tây Ban Nha, học sinh đến từ Đức, học sinh đến từ Pháp.

Vì thế, xác suất của biến cố trên là \(\dfrac{3}{9} = \dfrac{1}{3}\).

c) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Mỹ” là: học sinh đến từ Brasil, học sinh đến từ Canada.

Vì thế, xác suất của biến cố trên là \(\dfrac{2}{9}\).

d) Có hai kết quả thuận lợi cho biến cố “Học sinh được chọn ra đến từ châu Phi” là: học sinh đến từ Ai Cập, học sinh đến từ Nam Phi.

Vì thế, xác suất của biến cố trên là \(\dfrac{2}{9}\).


Bài trước:

👉 Giải bài 1 2 3 4 5 trang 28 29 sgk Toán 7 tập 2 Cánh Diều

Bài tiếp theo:

👉 Giải bài 1 2 3 4 5 6 7 8 9 trang 34 35 36 sgk Toán 7 tập 2 Cánh Diều

Trên đây là bài Hướng dẫn Giải bài 1 2 3 4 5 trang 32 33 sgk Toán 7 tập 2 Cánh Diều đầy đủ, ngắn gọn và dễ hiểu nhất. Chúc các bạn làm bài môn toán 7 tốt nhất!


“Bài tập nào khó đã có giaibaisgk.com