Giải bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11

Hướng dẫn giải Bài §2. Giới hạn của hàm số, Chương IV. Giới hạn, sách giáo khoa Đại số và Giải tích 11. Nội dung bài giải bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và giải tích có trong SGK để giúp các em học sinh học tốt môn toán lớp 11.


Lý thuyết

I. Giới hạn hữu hạn

Cho khoảng \(K\) chứa điểm \(x_0\) và hàm số \(y = f(x)\) xác định trên \(K\) hoặc trên \(K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\).

\(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n ∈ K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\) và \(x_n\rightarrow x_0\), ta có

\(\lim f(x_n) =L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \((x_0; b)\).

\(\underset{x\rightarrow x_{_{0}}^{+}}{\lim} f(x) = L\) khi và chỉ khi dãy số \((xn) bất kì, \(x_0<x_n< b\) và \(x_n\rightarrow x_0\) ,ta có \(\lim f(x_n) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; x_0)\).

\(\underset{x\rightarrow x_{_{0}}^{-}}{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(a <x_n< x_0\) và \(x_n\rightarrow x_0\), ta có

\(\lim f(x_n) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +∞)\).

\(\underset{x\rightarrow+\infty }{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n> a\), \(x_n\rightarrow +\infty\) thì \(lim f(x_n) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \((-∞; a)\).

\(\underset{x\rightarrow-\infty }{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n< a\), \(x_n\rightarrow -\infty\) thì \(\lim f(x_n) = L\).

II. Giới hạn vô cực

Sau đây là hai trong số nhiều loại giới hạn vô cực khác nhau:

Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +∞)\), \(\underset{x\rightarrow+\infty }{\lim} f(x) = -∞\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n> a\), \(x_n\rightarrow +\infty\) thì ta có \(\lim f(x_n) = -∞\)

Cho khoảng \(K\) chứa điểm \(x_0\) và hàm số \(y = f(x)\) xác định trên \(K\) hoặc trên \(K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\).

\(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = +∞\) và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n ∈K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\) và \(x_n\rightarrow x_0\) thì ta có \(\lim f(x_n) = +∞\).

Nhận xét: \(f(x)\) có giới hạn \(+∞ \) khi và chỉ khi \(-f(x)\) có giới hạn \(-∞\).

III. Các giới hạn đặc biệt

a) \(\underset{x\rightarrow x_{_{0}}}{\lim} x = x_0\);

b) \(\underset{x\rightarrow x_{_{0}}}{\lim}c = c\);

c) \(\underset{x\rightarrow \pm \infty }{\lim} c = c\);

d) \(\underset{x\rightarrow \pm \infty }{\lim}\) \(\frac{c}{x} = 0\) (\(c\) là hằng số);

e) \(\underset{x\rightarrow+\infty }{\lim} x^k= +∞\), với \(k\) nguyên dương;

f) \(\underset{x\rightarrow-\infty }{lim} x^k= -∞\), nếu \(k\) là số lẻ;

g) \(\underset{x\rightarrow-\infty }{lim}x^k = +∞\) , nếu \(k\) là số chẵn.

IV. Định lí về giới hạn hữu hạn

Định lí 1:

a) Nếu \(\underset{x\rightarrow x_{_{0}}}{lim} = L\) và \(\underset{x\rightarrow x_{_{0}}}{lim}\) \(g(x) = M\) thì:

\(\underset{x\rightarrow x_{_{0}}}{lim} [f(x) + g(x)] = L + M\);

\(\underset{x\rightarrow x_{_{0}}}{lim} [f(x) – g(x) = L – M\);

\(\underset{x\rightarrow x_{_{0}}}{lim} [f(x) . g(x)] = L.M\);

\(\underset{x\rightarrow x_{_{0}}}{lim}\) \(\frac{f(x)}{g(x)}\)= \(\frac{L}{M}\) (nếu \(M ≠ 0\)).

b) Nếu \(f(x) ≥ 0\) và \(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = L\), thì \(L ≥ 0\) và \(\underset{x\rightarrow x_{_{0}}}{\lim}\sqrt {f(x)} = \sqrt L\)

Chú ý: Định lí 1 vẫn đúng khi \(x_n\rightarrow +\infty\) hoặc \(x_n\rightarrow -\infty\).

Định lí 2.

\(\underset{x\rightarrow x_{_{0}}}{lim} f(x) = L\) khi và chỉ khi \(\underset{x\rightarrow x_{_{0}}^{+}}{lim}\) f(x) = \(\underset{x\rightarrow x_{_{0}}^{-}}{\lim} f(x) = L\).

V. Quy tắc về giới hạn vô cực

a) Quy tắc giới hạn của tích \(f(x).g(x)\)

b) Quy tắc tìm giới hạn của thương \(\frac{f(x)}{g(x)}\)

(Dấu của \(g(x)\) xét trên một khoảng \(K\) nào đó đang tính giới hạn, với \(x ≠ x_0\) ).

Dưới đây là phần Hướng dẫn trả lời các câu hỏi và bài tập trong phần hoạt động của học sinh sgk Đại số và Giải tích 11.


Câu hỏi

1. Trả lời câu hỏi 1 trang 123 sgk Đại số và Giải tích 11

Xét hàm số:

\(\displaystyle f(x) = {{2{x^2} – 2x} \over {x – 1}}\)

1. Cho biến x những giá trị khác 1 lập thành dãy số xn, xn → 1 như trong bảng sau:

Khi đó, các giá trị tương ứng của hàm số f(x1), f(x2),…, f(xn), …

cũng lập thành một dãy số mà ta kí hiệu là (f(xn)).

a) Chứng minh rằng \(f\left( {{x_n}} \right) = 2{x_n} = \dfrac{{2n + 2}}{n}\)

b) Tìm giới hạn của dãy số (f(xn)).

2. Chứng minh rằng với dãy số bất kì xn, xn ≠ 1 và xn → 1, ta luôn có f(xn) → 2.

(Với tính chất thể hiện trong câu 2, ta nói hàm số \(\displaystyle f(x) = {{2{x^2} – 2x} \over {x – 1}}\) có giới hạn là 2 khi x dần tới 1).

Trả lời:

Ta có:

1. a) \(\displaystyle f({x_n}) = {{2{x_n}^2 – 2{x_n}} \over {{x_n} – 1}} = {{2{x_n}({x_n} – 1)} \over {{x_n} – 1}} \) \(= 2{x_n}\)

\(\displaystyle {x_n} = {{n+1} \over {n}} \) \(\displaystyle \Rightarrow f({x_n}) = 2{x_n} = 2.{{n+1} \over {n}} = {{2n+2} \over {n}}\)

b) \(\displaystyle \mathop {\lim }\limits_{n \to + \infty } (f({x_n}) – 2) \) \(\displaystyle = \mathop {\lim }\limits_{n \to + \infty } ({{2n+2} \over {n}} – 2) = \mathop {\lim }\limits_{n \to + \infty } {{ 2} \over {n}}\)

Ta có: \(\displaystyle \mathop {\lim }\limits_{n \to + \infty } {{ 2} \over {n}} = 0 \) \(\displaystyle \Rightarrow \mathop {\lim }\limits_{n \to + \infty } (f({x_n}) – 2) = 0 \) \(\displaystyle \Rightarrow \mathop {\lim }\limits_{n \to + \infty } f({x_n}) = 2\)

2. \(\lim f({x_n}) = \lim\,2{x_n} \) \(= 2\lim {x_n} = 2.1 = 2\)


2. Trả lời câu hỏi 2 trang 127 sgk Đại số và Giải tích 11

Trong biểu thức (1) xác định hàm số $y = f(x)$ ở Ví dụ 4, cần thay $2$ bằng số nào để hàm số có giới hạn là $-2$ khi $x → 1$?

Trả lời:

Để hàm số có giới hạn bằng \( – 2\) tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ – }} f\left( x \right) = – 2\) hay \(5.1 + c = – 2 \Leftrightarrow c = – 7\).

Vậy cần thay \(2\) bằng \( – 7\) để hàm số có giới hạn bằng \( – 2\) tại \(x = 1\).


3. Trả lời câu hỏi 3 trang 127 sgk Đại số và Giải tích 11

Cho hàm số $f(x) = {1 \over {x – 2}}$ có đồ thị như ở Hình 52

Quan sát đồ thị và cho biết:

– Khi biến $x$ dần tới dương vô cực, thì f(x) dần tới giá trị nào.

– Khi biến $x$ dần tới âm vô cực, thì f(x) dần tới giá trị nào.

Trả lời:

– Khi biến $x$ dần tới dương vô cực, thì $f(x)$ dần tới giá trị dương vô cực

– Khi biến $x$ dần tới âm vô cực, thì $f(x)$ dần tới giá trị âm vô cực

Dưới đây là phần Hướng dẫn giải bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!


Bài tập

Giaibaisgk.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập đại số và giải tích 11 kèm bài giải chi tiết bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11 của Bài §2. Giới hạn của hàm số trong Chương IV. Giới hạn cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:

Giải bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11
Giải bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11

1. Giải bài 1 trang 132 sgk Đại số và Giải tích 11

Dùng định nghĩa tìm các giới hạn sau:

a) \(\underset{x\rightarrow 4}{lim}\frac{x+1}{3x – 2}\);

b) \(\underset{x \rightarrow +\infty }{lim}\frac{2-5x^{2}}{x^{2}+3}\).

Bài giải:

a) Hàm số \(f(x) = \frac{x +1}{3x – 2}\) xác định trên \(\mathbb R\backslash \left\{ {{2 \over 3}} \right\}\) và ta có \(x = 4 \in \left( {{2 \over 3}; + \infty } \right)\)

Giả sử \((x_n)\) là dãy số bất kì và \(x_n ∈ \left( {{2 \over 3}; + \infty } \right)\); \(x_n≠ 4\) và \(x_n→ 4\) khi \(n \to + \infty \).

Ta có \(\lim f(x_n) = \lim \frac{x_{n} +1}{3x_{n} – 2} = \frac{4 + 1}{3. 4 – 2} = \frac{1}{2}\).

Vậy \(\underset{x\rightarrow 4}{\lim}\) \(\frac{x +1}{3x – 2}\) = \(\frac{1}{2}\).

b) Hàm số \(f(x)\) = \(\frac{2-5x^{2}}{x^{2}+3}\) xác định trên \(\mathbb R\).

Giả sử \((x_n)\) là dãy số bất kì và \(x_n→ +∞\) khi \(n \to + \infty \)

Ta có \(\lim f(x_n) = \lim \frac{2-5x^{2}_{n}}{x^{2}_{n}+3}= \lim \frac{\frac{2}{x^{2}_{n}}-5}{1+\frac{3}{x^{2}_{n}}} = -5\).

Vậy \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{2-5x^{2}}{x^{2}+3} = -5\).


2. Giải bài 2 trang 132 sgk Đại số và Giải tích 11

Cho hàm số

\(f(x) = \left\{ \matrix{
\sqrt x + 1 \text{ nếu }x\ge 0 \hfill \cr
2x\text{ nếu }x < 0 \hfill \cr} \right.\)

và các dãy số \((u_n)\) với \(u_n= \frac{1}{n}\), \((v_n)\) với \(v_n= -\frac{1}{n}\).

Tính \(\lim u_n\), \(\lim v_n\), \(\lim f (u_n)\) và \(\lim (v_n)\).

Từ đó có kết luận gì về giới hạn của hàm số đã cho khi \(x → 0\) ?

Bài giải:

Ta có \(\lim u_n\)= \(\lim \frac{1}{n}= 0\); \(\lim v_n= \lim (-\frac{1}{n}) = 0\).

Do \(u_n=\frac{1}{n} > 0\) và \(v_n= -\frac{1}{n} < 0\) với \(∀ n\in {\mathbb N}^*\)

nên \(f(u_n)= \sqrt{\frac{1}{n}}+1\) và \(f(v_n) = -\frac{2}{n}\).

Từ đó \( \lim f(u_n)= \lim (\sqrt{\frac{1}{n}}+ 1) = 1\); \(\lim f(v_n)= lim (-\frac{2}{n}) = 0\).

Vì \(u_n→ 0\) và \(v_n → 0\), nhưng \(\lim f(u_n) ≠ \lim f(v_n)\) nên hàm số \(y = f(x)\) không có giới hạn khi
\(x → 0\).


3. Giải bài 3 trang 132 sgk Đại số và Giải tích 11

Tính các giới hạn sau:

a) \(\underset{x\rightarrow -3}{lim}\) \(\frac{x^{2 }-1}{x+1}\);

b) \(\underset{x\rightarrow -2}{lim}\) \(\frac{4-x^{2}}{x + 2}\);

c) \(\underset{x\rightarrow 6}{lim}\) \(\frac{\sqrt{x + 3}-3}{x-6}\);

d) \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{2x-6}{4-x}\);

e) \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{17}{x^{2}+1}\);

f) \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{-2x^{2}+x -1}{3 +x}\).

Bài giải:

a) \(\underset{x\rightarrow -3}{lim}\) \(\frac{x^{2 }-1}{x+1}\) = \(\frac{(-3)^{2}-1}{-3 +1} = -4\).

b) \(\underset{x\rightarrow -2}{lim}\) \(\frac{4-x^{2}}{x + 2}\)

= \(\underset{x\rightarrow -2}{lim}\) \(\frac{ (2-x)(2+x)}{x + 2}\)

= \(\underset{x\rightarrow -2}{lim} (2-x) = 4\).

c) \(\underset{x\rightarrow 6}{lim}\) \(\frac{\sqrt{x + 3}-3}{x-6}\)

= \(\underset{x\rightarrow 6}{lim}\) \(\frac{(\sqrt{x + 3}-3)(\sqrt{x + 3}+3 )}{(x-6) (\sqrt{x + 3}+3 )}\)

= \(\underset{x\rightarrow 6}{lim}\) \(\frac{x +3-9}{(x-6) (\sqrt{x + 3}+3 )}\)

= \(\underset{x\rightarrow 6}{lim}\) \(\frac{1}{\sqrt{x+3}+3}\) = \(\frac{1}{6}\).

d) \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{2x-6}{4-x}\)

= \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{2-\frac{6}{x}}{\frac{4}{x}-1} = -2\).

e) \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{17}{x^{2}+1} = 0\)

vì \(\underset{x\rightarrow +\infty }{lim}\) \((x^2+ 1) =\) \(\underset{x\rightarrow +\infty }{lim} x^2( 1 + \frac{1}{x^{2}}) = +∞\).

f) \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{-2x^{2}+x -1}{3 +x}\)

= \(\underset{x\rightarrow +\infty }{lim}\) \(\frac{-2+\frac{1}{x} -\frac{1}{x^{2}}}{\frac{3}{x^{2}} +\frac{1}{x}} = -∞\),

vì \(\frac{3}{x^{2}}+\frac{1}{x} > 0\) với \(∀x>0\).


4. Giải bài 4 trang 132 sgk Đại số và Giải tích 11

Tìm các giới hạn sau:

a) \(\underset{x\rightarrow 2}{lim}\) \(\frac{3x -5}{(x-2)^{2}}\);

b) \(\underset{x\rightarrow 1^{-}}{lim}\) \(\frac{2x -7}{x-1}\);

c) \(\underset{x\rightarrow 1^{+}}{lim}\) \(\frac{2x -7}{x-1}\).

Bài giải:

a) Ta có \(\underset{x\rightarrow 2}{\lim} (x – 2)^2= 0\) và \((x – 2)^2> 0\) với \(∀x ≠ 2\) và \(\underset{x\rightarrow 2}{\lim} (3x – 5) = 3.2 – 5 = 1 > 0\).

Do đó \(\underset{x\rightarrow 2}{\lim}\) \(\frac{3x -5}{(x-2)^{2}} = +∞\).

b) Ta có \(\underset{x\rightarrow 1^{-}}{\lim} (x – 1)=0\) và \(x – 1 < 0\) với \(∀x < 1\) và \(\underset{x\rightarrow 1^{-}}{\lim} (2x – 7) = 2.1 – 7 = -5 <0\).

Do đó \(\underset{x\rightarrow 1^{-}}{\lim}\frac{2x -7}{x-1} = +∞\).

c) Ta có \(\underset{x\rightarrow 1^{+}}{\lim} (x – 1) = 0\) và \(x – 1 > 0\) với \(∀x > 1\) và \(\underset{x\rightarrow 1^{+}}{\lim} (2x – 7) = 2.1 – 7 = -5 < 0\).

Do đó \(\underset{x\rightarrow 1^{+}}{lim}\) \(\frac{2x -7}{x-1}= -∞\).


5. Giải bài 5 trang 133 sgk Đại số và Giải tích 11

Cho hàm số \(f(x) = \frac{x+2}{x^{2}-9}\) có đồ thị như trên hình 53.

a) Quan sát đồ thị và nêu nhận xét về giá trị hàm số đã cho khi \(x → -∞\), \(x → 3^-\) và \(x → -3^+\)

b) Kiểm tra các nhận xét trên bằng cách tính các giới hạn sau:

\(\underset{x\rightarrow -\infty }{\lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-\infty; -3)\),

\(\underset{x\rightarrow 3^{-}}{\lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-3,3)\),

\(\underset{x\rightarrow -3^{+}}{lim} f(x)\) với \(f(x)\) được xét trên khoảng \((-3; 3)\).

Bài giải:

a) Quan sát đồ thị ta thấy:

Khi \(x → -∞\) thì \(f(x) → 0\);

Khi \(x → 3^-\) thì \(f(x) → -∞\);

Khi \(x → -3^+\) thì \(f(x) → +∞\).

b) Ta có:

\(\underset{x\rightarrow -\infty }{lim} f(x) = \underset{x\rightarrow -\infty }{lim}\) \(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow -\infty }{lim}\) \(\frac{\frac{1}{x}+\frac{2}{x^{2}}}{1-\frac{9}{x^{2}}} = 0\).

\(\underset{x\rightarrow 3^{-}}{lim} f(x) = \underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x+3}.\frac{1}{x-3} = -∞ \) vì \(\underset{x\rightarrow 3^{-}}{lim}\)\(\frac{x+2}{x+3}\) = \(\frac{5}{6} > 0\) và \(\underset{x\rightarrow 3^{-}}{\lim} \frac{1}{x-3} = -∞\).

\(\underset{x\rightarrow -3^{+}}{lim} f(x) =\) \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x^{2}-9}\) = \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x-3}\) . \(\frac{1}{x+3} = +∞\)
vì \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{x+2}{x-3}\) = \(\frac{-1}{-6}\) = \(\frac{1}{6} > 0\) và \(\underset{x\rightarrow -3^{+}}{lim}\) \(\frac{1}{x+3} = +∞\).


6. Giải bài 6 trang 133 sgk Đại số và Giải tích 11

Tính:

\(\eqalign{
& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} – {x^2} + x – 1) \cr
& b)\mathop {\lim }\limits_{x \to – \infty } ( – 2{x^3} + 3{x^2} – 5) \cr
& c)\mathop {\lim }\limits_{x \to – \infty } (\sqrt {{x^2} – 2x + 5}) \cr
& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 – 2x}} \cr} \)

Bài giải:

Ta có:

\(\eqalign{
& a)\mathop {\lim }\limits_{x \to + \infty } ({x^4} – {x^2} + x – 1) = \mathop {\lim }\limits_{x \to + \infty } {x^4}\left( {1 – {1 \over {{x^2}}} + {1 \over {{x^3}}} – {1 \over {{x^4}}}} \right) = + \infty \cr
& b)\mathop {\lim }\limits_{x \to – \infty } ( – 2{x^3} + 3{x^2} – 5) = \mathop {\lim }\limits_{x \to – \infty } {x^3}\left( { – 2 + {1 \over x} – {5 \over {{x^2}}}} \right) = + \infty \cr
& c)\mathop {\lim }\limits_{x \to – \infty } (\sqrt {{x^2} – 2x + 5} ) = \mathop {\lim }\limits_{x \to – \infty } |x|\sqrt {1 – {2 \over x} + {5 \over {{x^2}}}} = + \infty \cr
& d)\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} + 1} + x} \over {5 – 2x}} = \mathop {\lim }\limits_{x \to + \infty } {{x\left( {\sqrt {1 + {1 \over {{x^2}}}} + 1} \right)} \over {5 – 2x}} = \mathop {\lim }\limits_{x \to + \infty } {{\left( {\sqrt {1 + {1 \over {{x^2}}}} + 1} \right)} \over {{5 \over x} – 2}} = – 1 \cr} \)


7. Giải bài 7 trang 133 sgk Đại số và Giải tích 11

Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d’\) lần lượt là khoảng cách từ một vật thật \(AB\) và từ ảnh \(A’B’\) của nó tới quang tâm \(O\) của thấu kính (h.54). Công thức thấu kính là \(\frac{1}{d}+\frac{1}{d’}=\frac{1}{f}.\)

a) Tìm biểu thức xác định hàm số \(d’ = φ(d)\).

b) Tìm \(\underset{d\rightarrow f^{+} }{\lim} φ(d)\), \(\underset{d\rightarrow f^{-} }{\lim} φ(d)\) và \(\underset{d\rightarrow +\infty }{\lim} φ(d)\). Giải thích ý nghĩa của các kết quả tìm được.

Bài giải:

a) Từ hệ thức \(\frac{1}{d}+\frac{1}{d’}=\frac{1}{f}.\) Suy ra \(d’ = φ(d) = \frac{fd}{d-f}\).

b) \(\underset{d\rightarrow f^{+} }{lim} φ(d) = \underset{d\rightarrow f^{+} }{lim}\) \(\frac{fd}{d-f}= +∞\) .

Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.

\(\underset{d\rightarrow f^{-} }{lim}φ(d) =\) \(\underset{d\rightarrow f^{-} }{lim}\) \(\frac{fd}{d-f} = -∞\).

Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.

\(\underset{d\rightarrow +\infty }{lim} φ(d) =\) \(\underset{d\rightarrow +\infty }{lim}\) \(\frac{fd}{d-f}\) = \(\underset{d\rightarrow +\infty }{lim}\) \(\frac{f}{1-\frac{f}{d}} = f\).

Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F’ và vuông góc với trục chính).


Bài trước:

Bài tiếp theo:


Xem thêm:

Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 11 với giải bài 1 2 3 4 5 6 7 trang 132 133 sgk Đại số và Giải tích 11!


“Bài tập nào khó đã có giaibaisgk.com